Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy
نویسندگان
چکیده
منابع مشابه
Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy
Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in...
متن کاملFluorescent Rhodamines and Fluorogenic Carbopyronines for Super-Resolution STED Microscopy in Living Cells.
A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500-630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye-ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure-property relationships of the new...
متن کاملResolution scaling in STED microscopy.
We undertake a comprehensive study of the inverse square root dependence of spatial resolution on the saturation factor in stimulated emission depletion (STED) microscopy and generalize it to account for various focal depletion patterns. We used an experimental platform featuring a high quality depletion pattern which results in operation close to the optimal optical performance. Its superior i...
متن کاملSub-Abbe resolution: from STED microscopy to STED lithography
Commonly, in stimulated emission depletion (STED) fluorescence nanoscopy, light of a wavelength located at the red tail of the emission spectrum of the dye is used to shrink the effective fluorophore excitation volume and thus to obtain images with sub diffraction resolution. Here, we demonstrate that continuous wave (CW) STED nanoscopy is feasible using STED wavelengths located at the emission...
متن کاملInterferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure.
Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated locali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2012
ISSN: 1094-4087
DOI: 10.1364/oe.20.017653